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Abstract

Anomaly detection (AD) is a crucial visual task aimed at
recognizing abnormal pattern within samples. However,
most existing AD methods suffer from limited generaliz-
ability, as they are primarily designed for domain-specific
applications, such as industrial scenarios, and often per-
form poorly when applied to other domains. This chal-
lenge largely stems from the inherent discrepancies in fea-
tures across domains. To bridge this domain gap, we intro-
duce UniNet, a generic unified framework that incorporates
effective feature selection and contrastive learning-guided
anomaly discrimination. UniNet comprises student-teacher
models and a bottleneck, featuring several vital innova-
tions: First, we propose domain-related feature selection,
where the student is guided to select and focus on represen-
tative features from the teacher with domain-relevant pri-
ors, while restoring them effectively. Second, a similarity
contrastive loss function is developed to strengthen the cor-
relations among homogeneous features. Meanwhile, a mar-
gin loss function is proposed to enforce the separation be-
tween the similarities of abnormality and normality, effec-
tively improving the model’s ability to discriminate anoma-
lies. Third, we propose a weighted decision mechanism for
dynamically evaluating the anomaly score to achieve robust
AD. Large-scale experiments on 11 datasets from various
domains show that UniNet surpasses existing methods1.

1. Introduction
Visual anomaly detection (AD) has gained significant trac-
tion in recent years, with applications spanning across vari-
ous fields, such as medical image diagnosis [7, 37, 48], in-
dustrial defect inspection [9, 25, 33, 50], and video surveil-
lance [1, 39, 44]. Prior AD paradigms typically develop

*Corresponding author.
1https://github.com/pangdaTangtt/UniNet

separate models tailored to each domain (see Fig. 1(a)).
Despite considerable advancements in domain-specific ap-
plications, these approaches often suffer from limited cross-
domain applicability. This limitation primarily arises from
domain differences and inherent discrepancies in features.
For instance, in industrial AD, some self-supervised meth-
ods [29, 43, 55] employ external data [10] or data augmenta-
tion technologies to synthesize anomalies and learn anoma-
lous feature distribution. However, the anomalies generated
in this manner can differ substantially from those encoun-
tered in other domains, e.g., medical imaging [11, 26, 45] or
video surveillance [30], potentially resulting in insufficient
learning of the anomalous distribution. In fact, beyond the
stark differences in visual appearance of anomalies–such as
defects on industrial products vs. polyps on the intestine or
anomalous behavior like cyclist in video surveillance–there
are also notable differences in the normal features across
different domains. This variability further complicates their
cross-domain applications. Moreover, another main chal-
lenge hindering the effective application of most meth-
ods across other domains is their reliance on pre-trained
networks–trained on source domains such as ImageNet
[13]–for feature extraction. Recent studies [17, 23, 57] have
demonstrated that pre-trained features often bear little re-
semblance to those needed to the target domain owing to
inherent biases in these pre-trained networks, adversely af-
fecting performance (see Fig. 1(c)). In light of these chal-
lenges, this paper explores the problem of how to develop a
unified framework capable of adapting to diverse domains
while achieving accurate AD (see Fig. 1(b)).

Recently, ReContrast [17] introduces contrastive learn-
ing (CL) elements to optimize its framework for adapta-
tion to different target domains, showing good transfer abil-
ity. Nevertheless, two limitations restrict its further devel-
opment. First, it struggles to capture representative fea-
tures relevant to the target domain, which impacts its ability
to understand domain-related information. Second, it still
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Figure 1. (a) One-model-one-domain setting. (b) One-model multi-domain setting. (c) AUROC curve comparison of UniNet and competing
AD methods (reliance on pre-trained features) on medical datasets. (d) Architecture of ReContrast.

faces a significant challenge in effectively discriminating
between abnormality and normality, even after being trained
on some anomalous samples, which limits its applicability
in supervised settings [2, 6, 24, 46].

In respond to these problems, we propose a novel generic
unified framework based on ReContrast, termed UniNet. It
consists of student-teacher (S-T) models along with a bot-
tleneck. Concretely, UniNet first develop a lightweight-
yet-powerful multi-scale embedding module (MEM) within
the bottleneck to better capture the contextual relationships
among features provided to the student. We then propose
domain-related feature selection, a method that prompts the
student to select crucial features from the teacher with prior
knowledge to learn domain-related information. To effec-
tively distinguish anomalies, a similarity-contrastive loss is
first proposed to strengthen the correlations among homo-
geneous features. Followed this, a margin loss is developed
to enhance the similarity of normal features, ensuring they
are separated from anomalous ones with low similarity. Fi-
nally, considering the similarity between the outputs of S-T
networks, we propose a weighted decision mechanism to
adaptively calculate the anomaly score for improved AD
performance. Notably, unlike ReContrast [17] that mainly
focuses on unsupervised AD, our UniNet can be suited for
unsupervised and supervised settings simultaneously. In
summary, our contributions are as follows:

• This paper presents UniNet, a generic unified framework
that can be oriented towards a wider range of domains,
applicable to both unsupervised and supervised settings.

• We design MEM to capture contextual information and
propose domain-related feature selection to guide the stu-
dent in selecting and learning target-oriented representa-
tive features from the teacher.

• A similarity-contrastive loss is developed to enhance the
relationships among homogeneous features and we then

employ a margin loss to enhance the similarity of nor-
mal features for better anomaly discrimination. We im-
plement a weighted decision mechanism to achieve supe-
rior AD performance during inference.

• Large-scale experiments conducted on 11 datasets from
industrial, medical and video domains manifest that
UniNet achieves superior results across different metrics.

2. Related work

Unsupervised methods. Unsupervised AD methods rely
solely on available anomaly-free samples to learn their dis-
tribution due to the scarcity of anomalous data. Conse-
quently, numerous promising methods [17, 25, 33, 39, 41,
47, 50, 58] have been continuously proposed. AST [41] em-
ploys an asymmetric S-T framework, minimizing the dis-
tance between their outputs to identify anomalies with large
deviations. THF [25] proposes a new flow-based method
that prevents the overlap of distribution between normal
and anomalous features. Other attempts explore the use
of memory banks to store additional normal prototypes to
effectively detect anomalies, such as PatchCore [40] and
MemKD [16]. The aforementioned methods are typically
classified as one-class AD methods, as they train a separate
model for each class. Recently, some efforts [17, 18, 53]
have shifted toward multi-class AD, aiming to use one uni-
fied model to detect anomalies across different classes con-
currently. UniAD [53] pioneers this approach, solving the
problem that a growing number of training categories of-
ten leads to increased computational time. MambaAD [18]
further advances this idea by exploring state space models,
achieving outstanding performance while maintaining low
complexity and computational overheads.

Supervised methods. Unlike unsupervised AD meth-
ods, supervised AD approaches can train a model on
anomalous samples, thereby improving the accuracy of



class boundaries [42]. DevNet [38] utilizes some labeled
anomalous samples and prior probabilities to enforce that
the anomaly scores of the anomalous samples significantly
deviate from those of the normal samples in the upper tail.
FCDD [34] employs a fully convolutional neural network
architecture to map normal samples towards the center of
the feature space, effectively distancing anomalous samples
from this central region. DRA [14] generalizes to unknown
anomalies by learning disentangled anomalous representa-
tions for different types of anomalies. Due to the scarcity of
available supervised datasets, these methods are primarily
trained on the widely used MVTec AD dataset [4], where
the labeled anomalous samples are generally derived from
the test set. However, they still face challenge in having ad-
equate anomalous samples. Consequently, they often em-
ploy anomaly synthesis strategy [29, 43, 55] to generate
anomalous samples, but these anomalies hardly conform to
the real-world anomaly distribution. To tackle the issue of
limited supervised datasets, Baitieva et al. [2] recently in-
troduced a new industrial supervised AD benchmark, which
features a wider array of complex anomalies and substan-
tial intra-class variability among anomalous-free images.
Given that conventional AD methods struggle with this
benchmark, they further incorporated a segmentation-based
anomaly detector to enhance AD performance.

In this paper, our work seeks to develop a unified solu-
tion for AD across different domains, in contrast to most
current mainstream methods, which design separate models
for domain-specific AD.

3. Preliminaries

The prototype of ReContrast [17] is composed of a pre-
trained teacher model, a bottleneck, and a learnable student
model. ReContrast aims to optimize the entire framework
to the target domain through CL elements. Let F i

T , F
i
S ∈

RCi×Hi×Wi respectively represent the output of ith layer
of the teacher and student models, where Ci, Hi, and Wi

are the channels, height, width of the corresponding output.
To optimize the student model, ReContrast first proposes
global cosine distance to better maintain global consistency
between feature points and avoid instability during training:

Lg =

n∑
i=1

d(F i
T , F

i
S) =

n∑
i=1

1− F(F i
T )

⊤∥∥F(F i
T )

∥∥ · F(F i
S)∥∥F(F i
S)
∥∥ , (1)

where n represents the number of layers, d(:, :) is the cosine
distance, ∥·∥ is ℓ2 norm, and F(·):RC×H×W → RCHW

denotes a flattening operation. Subsequently, ReContrast
optimizes the pre-trained teacher model to adapt it to the
target domain. However, prior works suggested that this
would result in pattern collapse. Inspired by CL for self-
supervised learning [8], the stop gradient operation is intro-

duced to mitigate pattern collapse by modifying Eq. (1):

Lg =

n∑
i=1

1− SG(F(F i
T ))

⊤∥∥SG(F(F i
T ))

∥∥ · F(F i
S)∥∥F(F i
S)
∥∥ , (2)

where SG(·) is the stop gradient operation. To prevent
“identical shortcut” caused by no contrastive pairs, ReCon-
trast introduces an additional frozen teacher model without
any optimization during training. In this way, two teacher
models can produce two views from one image, i.e., a target
domain view and a source domain view, to achieve image
augmentations, similar to a CL paradigm (see Fig. 1(d)).

4. Methodology
4.1. Approach overview
With inspiration from ReContrast [17], this paper proposes
UniNet, a generic unified framework for different domains,
as illustrated in Fig. 2. The goal of UniNet is to optimize the
entire framework towards the target domain, while enabling
domain-relevant feature selection and learning, along with
effective anomaly discrimination.

To capture the contextual relationships among features,
UniNet first develops a lightweight-yet-effective MEM
within the bottleneck (Sec. 4.2). Then, we propose domain-
related feature selection, guiding the student to select target-
oriented features from the teacher with prior knowledge and
prompting its learning (Sec. 4.3). Besides, a similarity-
contrastive loss is proposed to enhance the correlations
among homogeneous features, followed by the develop-
ment of a margin loss to preserve the distinction between
the similarities of normal and anomalous features, thereby
enhancing discriminability (Sec. 4.4). Based on the similar-
ity between the outputs of S-T network, a weighted decision
mechanism is proposed to achieve robust AD performance
during inference (Sec. 4.5).

4.2. Multi-Scale Embedding Module
Motivation. Some prior approaches [12, 25] struggle to
capture the contextual relationships among features, imped-
ing enhancement in feature correlations and redundancy re-
duction. These methods typically employ a set of small ker-
nels to mitigate increased computational overheads, but re-
cent research [15] has demonstrated that fittingly using a
few larger kernels can be helpful for vision tasks. Propelled
by this insight, we design a simple yet powerful Multi-Scale
Embedding Module (MEM) within the bottleneck for fea-
ture extraction across various contexts while maintaining
low memory consumption, as visualized in Fig. 2.

Module design. Considering the multi-scale features,
we first split the input as two parts along the channel dimen-
sions, with two different size of kernels to capture global
and local information, thus enriching the contextual rela-
tionships among features. These two parts are respectively
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Figure 2. Overall framework of the proposed UniNet. It consists of a pair of teachers models, a bottleneck, and a student model, with
several key components: MEM, DFS, Similarity-Contrastive loss LSC and Margin loss LM .

fed into a k×k (where k is 3 or 7) kernel convolution layer,
followed by a batch normalization (BN) layer and a ReLU
activation (ReLU). Similarly, they are further fed into a k×k
kernel convolution layer and a BN layer to enhance feature
extraction. Then, these two parts are concatenated to com-
press channel dimensions by a 1×1 kernel convolution layer
and a BN layer. Finally, to achieve better regularization, a
residual connection is conducted before ReLU.

Due to the use of large kernels, the number of parameters
and inference time would increase. To mitigate this, we re-
parameterized the large kernel convolutional layers through
the small kernel convolutional layers and BN layers:

ωR = ω · γ√
σ2 + ϵ

, bR = b− µ · γ√
σ2 + ϵ

, (3)

where ω is the weight of small kernel convolutional layer,
while ωR and bR are the weight and bias of large kernel
convolutional layer after re-parameterization. µ, σ2, γ, and
b denote the mean, variance, weight, and bias of BN layers,
respectively. ϵ is a small constant. In this way, 7× 7 kernel
convolution layers can be viewed as equivalent to 3×3 ker-
nel convolution layers, thus decreasing computational costs.

4.3. Domain-Related Feature Selection
Motivation. Despite its great transfer ability across differ-
ent domains, ReContrast [17] still suffer from an insuffi-
cient capture of feature representations relevant to the tar-

get domain, resulting in the loss of crucial information.
To solve this challenge, we propose Domain-Related Fea-
ture Selection (DFS), which encourages the student to se-
lectively concentrate on target-oriented features from the
teacher and well restore them, thereby avoiding the inclu-
sion of unimportant information. Particularly, the student is
required to learn only representative information pertaining
to the target domain, rather than all available information.

Selection and learning. Introducing information from
target-oriented domain into the student is crucial for en-
abling it to understand and generate the feature represen-
tations required for that domain. To achieve it, we utilize
the weight to control how much representative information
should be selected from the teacher with prior knowledge.
Concretely, let the features from the teacher and student
models be F i

T , F
i
S ∈ RCi×Hi×Wi , and the teacher feature is

flattened to F̂ i
T ∈ RCi×HiWi . The weight can be generated

as follows:

wi =
exp(F̂ i

T − ϱ)∑HiWi

j=1 exp(F̂ i
T (:, j)− ϱ)

, (4)

where wi ∈ RCi×HiWi and ϱ = max(F̂ i
T ). To avoid rely-

ing on local information only, we integrate global informa-
tion to ensure weight interaction, enhancing aware ability.



The global information F g
i can be obtained as follows:

F g
i =

1

Hi ·Wi

Hi∑
h=1

Wi∑
w=1

F i
T (:, h, w), (5)

where F g
i ∈ RCi×1×1. Let the weight wi be further re-

shaped to (wi)
R ∈ RCi×Hi×Wi . The interacted weight can

be obtained through the fusion of global and local infor-
mation, and the student can then select domain-related fea-
ture information based on the interacted weight to generate
domain-related features (FSi

)P :

(F i
S)

P = F i
S ⊙ {(wi)

R ⊙ (θ + F g
i )}, (6)

where θ is a learnable parameter flexibly controlling the
domain-related feature selection and ⊙ represents element-
wise multiplication. To ensure that the student effectively
learns the prior knowledge, we aim to minimize the distance
between its output and that of the teacher during training:

LKD =

n∑
i=1

d(SG(F i
T ), (F

i
S)

P ). (7)

4.4. Comparing similarity and enhancing discrimi-
nation

Motivation. Most unsupervised methods [12, 17, 33, 40]
may fail to establish class boundaries [38] due to the ab-
sence of anomalous samples. However, even when trained
with some anomalous samples, these methods still face
challenge in effectively discriminating anomalies, particu-
larly unseen ones [14]. To overcome this limitation, we
propose a similarity-contrastive loss and a margin loss. The
similarity-contrastive loss is first employed to enhance the
correlations among normal features, ensuring they remain
tightly clustered. Yet, since anomalous features are not ex-
pected to exhibit high similarity to normal ones, this encour-
ages a clear gap between them. Thus, we then use the mar-
gin loss to enforce a greater separation between their simi-
larity, further enhancing the model’s discrimination ability.

Mechanism. The learned student feature (F i
S)

P is flat-
tened and reshaped to (F̂ i

S)
P ∈ RHiWi×Ci . The similarity

matrix mi between the outputs of S-T models is obtained:

mi =
(F̂ i

S)
P · (F̂ i

T )∥∥∥(F̂ i
S)

P
∥∥∥ ·

∥∥∥F̂ i
T

∥∥∥ · T
, (8)

where T is a temperature parameter which controls the dis-
tribution of similarity. With the similarity matrix, the nor-
malized similarity matrix can be then obtained by:

m̂i =
exp(mi)∑HiWi

k=1 exp(mi(:, k)) + ϵ
. (9)

Each diagonal element of m̂i is the similarity between
the features of S-T pairs. To strengthen the relationships
among normal features within these pairs, we employ the
similarity-contrastive loss to maximize their similarity:

LSC = − 1

n

n∑
i=1

N1∑
j=1

log(diag((m̂i)j) + ϵ), (10)

where N1(N1 ≤ N) is the number of normal samples and
diag(·) is the operation of selecting diagonal elements.

After maximizing feature similarity, we further use the
margin loss to improve the separability between features. It
ensures higher similarity for normal features, which helps
mitigate the issue of class boundaries. When trained with
anomalous samples, it further constrains the similarity of
anomalous features below a range, thereby improving dis-
criminability. The margin loss is defined as follows:

LM =
1

n

n∑
i=1


N1∑
j=1

max (0, (τ − diag ((m̂i)j)))+

N−N1∑
k=1

max(0, (diag((m̂i)k)−
τ

2
))

}
,

(11)

where τ is a hyper-parameter controlling the boundary. In
this way, homogeneous features can be grouped together.

During training, the overall losses are measured as:

LU = λLKD + (1− λ)LSC + LM , (12)

where λ is a balancing hyper-parameter. In supervised set-
tings, Eq.(12) can be modified based on its task:

L = LU +

n−1∑
i=1

LS(Φ(F
i
S), l), (13)

where LS(:, :) denotes a Binary Cross-Entropy loss or a
Dice loss, Φ(·) is a flattening or upsampling operation, and
l is a label or a ground-truth mask.

4.5. Anomaly detection
Motivation. Some efforts [22, 38] use top K or top-ranked
values from the anomaly map to evaluate the anomaly score.
Nevertheless, they rely on a fixed value (e.g., K = 3%)
for score calculation, which does not ensure robust AD. To
remedy this, we propose a weighted decision mechanism
that dynamically calculates image-level anomaly score for
each sample, where anomaly score is determined by weight.

Weighted decision mechanism. Formally, we begin
with obtaining the pixel-level anomaly map for each sam-
ple. With a pair of teacher models and one student model,
two anomaly maps can be generated from each layer by
d(·) in Eq. (1), with in total of 2n anomaly maps. Then,



(a) MVTec AD

Method I-AUROC P-AUROC PRO

RD++ [47] 99.44 98.25 94.99
DMAD [32] 99.50 98.21 –
GLAD [52] 99.30 98.62 95.31

ReConPacth [23] 99.56 98.18 –
RealNet [57] 99.65 99.03 93.07

ReContrast [17] 99.46 98.41 95.20

UniNet(Ours) 99.90 98.81 96.00

(b) BTAD

Method I-AUROC P-AUROC

PatchCore [40] 93.13 97.27
RD++ [47] 95.63 97.41

PyramidFlow [28] 95.83 97.70
ReConPacth [23] 95.80 97.47

RealNet [57] 96.07 97.90
ReContrast [17] 95.06 97.50

UniNet(Ours) 97.73 97.70

(c) MVTec 3D-AD

Method I-AUROC PRO

PatchCore [40] 81.14 91.03
AST [41] 88.00 –

M3DM [50] 85.03 94.22
Shape-Guided [9] 81.51 93.30

BTF [20] 78.52 87.63
ReContrast [17] 88.63 95.20

UniNet(Ours) 95.76 95.55

Table 1. Quantitative results on industrial datasets, including (a) MVTec AD, (b) BTAD, and (c) MVTec 3D-AD. We report the Image-level
AUROC (I-AUROC), Pixel-level AUROC (P-AUROC), and PRO. Best and second-best results are highlighted in red and blue, respectively.

we obtain 2n low similarity values by taking the maximum
value in each anomaly map. These low similarity values are
further transformed into a probability distribution N via a
Softmax activation. The values from N higher than the av-
erage of N are added to a set P to dynamically calculate
the weight. The weight is defined as follows:

vw = max{α( 1
L

L∑
pj∈P

pj), β} (14)

where P = {pj}Lj=1 contains L high probability values and
L ∈ [n− 1, n+ 1]. α controls its upper limit and β decides
the lower limit. After obtaining weight, 2n anomaly maps
are upsampled and accumulated to form the final pixel-level
anomaly map MAS . Finally, our method adaptively selects
the largest vw values from MAS and averages them to obtain
the final image-level anomaly score for AD. More details
can be found in Appendix.

For the segmentation task, the anomaly map MAS is em-
ployed, where higher values in it indicate the presence of
anomalies at that corresponding positions.

5. Experiments
5.1. Experimental setup
Datasets. To demonstrate the superiority of UniNet, exten-
sive experiments were conducted across 11 datasets from
various domains, including industrial defect inspection,
medical imaging analysis, and video surveillance. In in-
dustrial AD, we considered three unsupervised benchmarks
(MVTec AD [4], BTAD [36], and MVTec AD-3D [5])
and one recently published supervised benchmark, VAD
[2]. For medical diagnosis, we utilized three unsupervised
datasets (APTOS [45], OCT2017 [26], and ISIC2018 [11])
alongside three supervised datasets (Kvasir [24], CVC-
ClinicDB [6], and CVC-ColonDB [46]). In video surveil-
lance, we considered one popular unsupervised dataset,
Ped2 [30]. Further details can be found in Appendix.

Evaluation metrics. Following [2, 17, 37, 50, 51, 57],
appropriate metrics are selected for each task. The image-

Figure 3. Qualitative results of UniNet on MVTec AD dataset.
Each group from left to right: the anomalous images, our segmen-
tation results, and ground-truths.

level Area Under the Receiver Characteristic Curve (AU-
ROC) and Average precision (AP) are employed to eval-
uate AD performance. For anomaly segmentation, both
the pixel-level AUROC and Per-Region Overlap (PRO) are
used. In medical datasets, F1-score (F1) and accuracy
(ACC) are used for AD, while Dice Similarity Coefficient
(DSC) and mean Intersection over Union (mIoU) are ap-
plied for anomaly segmentation.

Implementation details. Following [12, 17], we used
the publicly available WideResNet50 as backbone in S-T
models. AdamW [35] was employed as the optimizer with
a learning rate of 5e-3 and 1e-6 for the learnable student
and teacher, respectively. The batch size was 8. All images
were resized into 256 × 256. For MVTec 3D-AD dataset,
only RGB data were used for training. Hyper-parameters n,
T , τ , λ, α, and β were set to 3, 2, 1, 0.7, 0.01, and 0.03,
respectively. More details can be found in Appendix.

5.2. Comparison with state-of-the-art methods
We compared UniNet against the state-of-the-art (SOTA)
methods on each dataset, selecting ReContrast [17] as base-
line model. Further details can be found in Appendix.

5.2.1. Results under the unsupervised setting
MVTec AD. Five leading methods were considered: Real-
Net [57], ReConPatch [23], GLAD [52], DMAD [32], and
RD++ [47]. The comparison results are presented in Table
1(a). UniNet achieves superior performance across multiple
metrics, except for the pixel-level AUROC slightly lower
than that of RealNet by 0.22%. UniNet yields the signifi-
cant results in terms of both image-level AUROC and pixel-



(a) Medical anomaly detection

Dataset → APTOS OCT2017 ISIC2018

Method ↓ I-AUROC F1 ACC I-AUROC F1 ACC I-AUROC F1 ACC

RD4AD [12] 92.43 90.65 86.44 99.25 97.79 96.70 85.09 74.53 78.76
PatchCore [40] 90.45 90.18 85.57 99.61 98.34 97.50 78.94 68.57 71.50
AE-flow [58] – – – 98.15 96.36 94.42 87.79 80.56 84.97

CFA [27] 94.21 94.39 92.03 98.01 96.40 94.70 81.31 72.31 74.61
SimpleNet [33] 93.42 91.16 87.27 98.50 96.91 95.40 82.17 69.82 73.59
ReContrast [17] 97.51 95.27 93.35 99.60 98.53 97.80 90.15 81.12 86.01

UniNet(Ours) 100.0 99.60 99.44 100.0 99.60 99.40 100.0 100.0 100.0

(b) Video anomaly detection

Ped2

Method I-AUROC

zxVAD [1] 96.9
SLM [44] 97.6

PDM-Net [21] 97.7
Ristea et al.[39] 95.4

AnomalyRuler [51] 97.9
ReContrast [17] 95.2

UniNet(Ours) 97.9

Table 2. Quantitative results on three medical datasets (APTOS, OCT2017, and ISIC2018) and one video dataset (VAD). We report the
I-AUROC, F1, and ACC. Best and second-best results are highlighted in red and blue, respectively.

(a) Industrial anomaly detection

Dataset → VAD

Method ↓ I-AUROC F1 ACC

DevNet [38] 87.00 80.05 84.53
DRA [14] 87.53 80.46 84.87

RD4AD [12] 87.40(90.23) 80.33 84.56
PatchCore [40] 88.52(91.70) 81.43 85.12
EfficientAD [3] 88.01(91.75) 81.55 85.31
ReContrast [17] 84.52(88.31) 74.03 78.23

UniNet(Ours) 99.95 98.60 98.60

(b) Medical anomaly detection

Dataset → Kvasir CVC-ClinicDB CVC-ColonDB

Method ↓ DSC mIOU DSC mIOU DSC mIOU

KDAS [49] 91.3 84.8 92.5 87.2 91.2 83.3
HarDNet-CPS [54] 91.1 85.6 91.7 88.7 91.0 83.6

SAM-EG [48] 91.5 86.2 93.1 87.9 91.5 84.3
MEGANet [7] 91.3 86.3 93.8 89.4 – –

MADGNet [37] 90.7 85.3 93.9 89.5 – –
ReContrast [17] 87.3 80.5 90.3 84.0 87.3 79.2

UniNet(Ours) 91.5 85.7 94.2 89.5 91.9 85.6

Table 3. Quantitative results on three medical datasets (Kvasir, CVC-ClinicDB, and CVC-ColonDB) and one industrial dataset (VAD).
For the medical datasets, we report the DSC and mIOS metrics, while for the VAD dataset, we provide the I-AUROC, F1, and ACC. The
values in parentheses indicate results after using SegAD [2]. Best and second-best results are highlighted in red and blue, respectively.

level PRO compared to SOTA methods, particularly ex-
celling in image-level AUROC with an average of 99.90%.
Our UniNet improves the baseline model by 0.44% and
0.40% AUROC, and 0.80% PRO. Besides, the anomalous
regions segmented by UniNet are identical to ground-truths,
as shown in Fig. 3. We also evaluated UniNet under the
multi-class AD setting, with results provided in Appendix.

BTAD. We compared UniNet with five SOTA methods:
ReConPatch [23], RealNet [57], PyramidFlow [28], RD++
[47], and PatchCore [40]. As shown in Table 1(b), UniNet
surpasses all methods in terms of image-level AUROC, out-
performing the recent two top methods, RealNet and Re-
ConPatch, by a large margin of 1.66% and 1.93%, respec-
tively. Meanwhile, UniNet achieves comparable segmen-
tation performance compared to RealNet. Besides, UniNet
improves the baseline by both 2.67% and 0.20% AUROC.

MTVec 3D-AD. We also evaluated UniNet on a more
challenging 3D dataset and compared it with SOTA meth-
ods, including M3DM [50], AST [41], Shape-Guided [9],
BTF [20], and PatchCore [40]. Table 1(c) shows the com-
parison results. Despite only RGB data used, UniNet still
achieves 95.76% image-level AUROC, surpassing other
methods and the baseline model by significant gains of
7.76% and 7.13%, respectively. Additionally, UniNet also
enhances PRO metric compared to competing methods.

Medical datasets. UniNet was evaluated on three med-
ical datasets: APTOS, OCT2017, and ISIC2018. Follow-

ing [17], we compared UniNet with five recent methods:
SimpleNet [33], CFA [27], AE-flow [58], PatchCore [40],
and RD4AD [12]. Detailed results are presented in Table
2(a). UniNet achieves exceptional performance across all
three evaluation metrics, with 100.0% image-level AUROC
on all three datasets. UniNet improves other methods and
the baseline model by 12.21% AUROC and 9.85% AUROC
on the more challenging ISIC2018 dataset, respectively.

Ped2. We compared UniNet with SOTA methods, in-
cluding [39], AnomalyRuler [51], PDM-Net [21], SLM
[44], and zxVAD [1]. As reported in Table 2(b), UniNet
also achieves comparable performance to AnomalyRuler in
video domain and surpasses the baseline by 2.7% AUROC.

5.2.2. Results under the supervised setting
VAD. UniNet was compared with methods reported in
[2], including three unsupervised methods (EfficientAD
[3], PatchCore [40], and RD4AD[12]) and two supervised
methods (DevNet [38], DRA[14]). The results are sum-
marized in Table 3(a). Even without SegAD, UniNet still
achieves 99.95% AUROC on this new and challenging
dataset and improves the competing methods that equip
with SegAD by 8.20% AUROC. It is noted that the unsu-
pervised methods struggle without SegAD, as they face dif-
ficulty in distinguish anomalies. Additionally, supervised
methods also perform poorly, as this dataset contains un-
seen anomalies, and they are biased by the seen anomalies.



MEM DFS LSC LM M I-AUROC P-AUROC PRO

98.42 98.13 94.89
✓ 99.01 98.20 95.06
✓ ✓ 99.23 98.29 95.13
✓ ✓ 99.36 98.34 95.40
✓ ✓ ✓ 99.40 98.59 95.30

✓ ✓ ✓ 99.42 98.64 95.52
✓ ✓ ✓ ✓ 99.77 98.76 95.73
✓ ✓ ✓ ✓ ✓ 99.90 98.81 96.00

Table 4. Ablation study on the key components of UniNet on the
MVTec AD dataset. Best results are highlighted in bold.

Dataset vm
Max 3% 5% 10% M(Ours)

MVTec 3D-AD 90.30 94.42 94.90 93.68 95.76
APTOS 99.53 99.87 99.95 99.98 100.0

VAD 99.35 99.36 99.38 99.37 99.95

Table 5. Study on the effect of vm on AD performance.
Max= 100%

H×W
denotes using the maximum value in the anomaly

map. Best results are highlighted in bold.

Medical datasets. UniNet was compared with several
SOTA supervised methods (MADGNet [37], HarDNet-CPS
[54], SAM-EG [48], MEGANet [7], and KDAS [49]) on
three datasets, including Kvasir, CVC-ClinicDB, and CVC-
ColonDB. Table 3(b) shows the detailed results. UniNet
demonstrates promising performance on both the DSC and
mIoU evaluation metrics, except for a 0.6% lower mIoU
on the Kvasir dataset compared to MEGANet. Notably, al-
though these methods are specifically designed for medical
polyp segmentation, UniNet still outperforms them.

5.3. Ablation study
To demonstrate the effectiveness of UniNet, we conducted
comprehensive ablation studies on datasets from different
domains. More details can be found in Appendix.

Study on key elements. The key components of UniNet
include MEM, DFS, similarity-contrastive loss LSC , mar-
gin loss LM , and weighted decision mechanism M. The
numerical results on the MVTec AD dataset are presented
in Table 4. With MEM, UniNet can capture richer con-
textual relationships among features, which is help for vi-
sual tasks. By incorporating DFS, UniNet obtains domain-
related information and thus enhances performance. When
only employing LSC , the performance is lower than using
both LSC and LM since the similarity for some normal fea-
tures is inadequately high. Besides, the use of M substan-
tially contributes to AD performance. Finally, combining
all these elements, UniNet yields superior anomaly detec-
tion and segmentation performance.

Study on loss functions. To validate the effectiveness
of LSC and LM , we conducted experiments on two unsu-
pervised datasets (MTVec AD and MTVec 3D-AD) and a
supervised dataset (VAD). Without LSC and LM , UniNet

(a) MVTec AD (Transistor) (b) MVTec 3D-AD (Bagel) (c) VAD
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Figure 4. Feature distributions visualized using t-SNE across three
datasets.

struggles to improve class boundaries in unsupervised set-
ting. Instead, integrating them to UniNet enhances the cor-
relations among normal features and maintains higher sim-
ilarity for them, enabling effective anomaly discrimination
(see Fig. 4(a) and (b)). In supervised setting, normal fea-
tures are clustered, while anomalous features are repelled
and their similarity are further constrained, which is helpful
for the model to distinguish anomalies, including unseen
anomalies (see Fig. 4(c)).

Study on weighted decision mechanism. During in-
ference, the precise calculation of weight vw is crucial for
the image-level anomaly score. Table 5 investigates the
effects of different vw on AD performance. As reported
in Table 5, our weighted decision mechanism M achieves
the best results across three datasets. Notably, compared
to recent methods [22, 38] that select the fixed largest vw
(e.g., vw=3%) values from the anomaly map to calculate
the anomaly score, our method dynamically determines the
optimal vw for more accurate AD, achieving a notable im-
provement of 0.86% on the MVTec 3D-AD dataset.

6. Conclusion

In this paper, we present UniNet, a generic unified anomaly
detection framework designed for diverse domains. UniNet
comprises student-teacher models and a bottleneck. The
key innovations of UniNet are threefold: domain-related
feature selection, similarity-contrastive loss and margin
loss, and weighted decision mechanism. These components
collectively enhance UniNet’s ability to effectively select
and learn domain-relevant feature information, distinguish
abnormality and normality, and achieve robust AD perfor-
mance during inference. Extensive experiments across 11
datasets from various domains demonstrate UniNet’s supe-
riority over SOTA methods.
Acknowledgements. This work was supported by the Na-
tional Natural Science Foundation of China under Grant
62372242.
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UniNet: A Contrastive Learning-guided Unified Framework with Feature
Selection for Anomaly Detection

Supplementary Material

7. Overview
The supplementary material is organized as follows: Ap-
pendix 8 provides additional details on the datasets and the
implementation of UniNet. Appendix 9 presents further ex-
perimental results on the MVTec AD, BTAD, VisA, and
MVTec 3D-AD datasets, as well as the complexity analysis
of UniNet. Appendix 10 presents supplementary ablation
study results. Appendix 11 includes additional visualiza-
tion results across various datasets. Appendix 12 discusses
the limitations and potential directions for future work.

8. Experimental setup
8.1. Datasets
MVTec AD [4] is a widely used dataset for industrial
anomaly detection, comprising 15 object and texture cat-
egories with a total of over 5,000 images. The dataset
contains various types of anomalies, such as scratches and
crackes. Each category includes a training set consisting
solely of normal images and a test set of containing both
normal and abnormal images.

BTAD [36] is a real-world industrial dataset consisting
of 3 different types of industrial products. The dataset con-
tains 2830 images, with 400, 1,000, and 399 training images
in class 1, 2, and 3, respectively.

VisA [59] is a publicly available dataset for visual
anomaly detection, comprising 12 categories and a total of
10,821 high-resolution images from diverse domains such
as electronics, food, and industrial parts. The dataset in-
cludes both normal and anomalous samples, with detailed
annotations for the anomalies.

MVTec 3D-AD [5] is a multi-modal dataset that includes
two different modality: RGB images and Point Clouds. The
dataset consists of 10 real-world categories with a total of
4147 high-resolution images.

VAD [2] is a newly introduced supervised benchmark
designed to encompass a wider array of complex anomalies
and substantial intra-class variability in anomalous-free im-
ages. The dataset contains 5,000 object images, with 165
unseen anomalous images reserved for testing.

APTOS [45] is a collection of color fundus images from
the 2019 APTOS blindness detection challenge. Each im-
age is associated with a label (ranging from 0 to 4) that indi-
cates the severity of diabetes retinopathy, with grade 0 rep-
resenting normal images.

OCT2017 [26] is a dataset of optical coherence tomog-
raphy images, with one class labeled as normal and three

Algorithm 1: Weighted Decision Mechanism for
anomaly detection

Input: Pixel-level anomaly map MAS for each
sample and outputs F i

S and F i
T from the S-T

models
Output: Anomaly score SAD for each sample

1 Function Main
// Low similarity value vl

generation
2 for i = 1, 2, . . . , n do
3 minimize vector-wise cosine similarity

between
{
F i
S , F

i
T

}
by d(·) and obtain vli

by max(·)
// Transform into the

probability distribution
4 vp = Softmax(vl)

// Weight vw generation
5 for i = 1, 2, . . . , 2n do
6 if vpi

> 1
2n

∑2n
i=1 vpi

then
7 Incorporate large values into P

8 Compute vw using P based on Eq. (14)
// Evaluate anomaly score SAD

9 SAD = 1
vw

∑K=vw
1 topK(MAS)

10 return SAD

other classes labeled as abnormal. The dataset contains over
20,000 images, with 1000 images used for testing.

ISIC2018 [11] is a collection of skin disease images
from Task 3 of the ISIC2018 challenge. The dataset in-
cludes seven classes, with nevus labeled as the normal
class and the remaining classes representing various types
of anomalies. Following [17], 6705 normal images from
training set are used, while the validation set of 193 images
serves as the test set.

Kvasir [24], CVC-ClinicDB [6], and CVC-ColonDB
[46] are three polyp segmentation datasets, containing a to-
tal of 1,000, 612, and 379 images, respectively, sourced
from diverse imaging clinics and centers. Each image is
accompanied by a corresponding pixel-level mask.

Ped2 [30] is a dataset designed for video anomaly detec-
tion, consisting of 2.6K frames for training and 2.0K frames
for testing. The anomalies in the dataset include cycling,
skateboarding, etc.



(a) MVTec AD

Category UniNet(Ours) ReContrast [17] RealNet [57] ReConPatch [23] GLAD [52] RD++ [47] DMAD [32]

Carpet 100.0 / 99.2 / 97.5 99.8 / 99.3 / 97.9 99.8 / 99.2 / 96.4 99.6 / 98.8 / – 99.0 / 98.5 / – 100.0 / 99.2 / 97.7 – / – / –
Grid 99.5 / 99.4 / 98.0 100.0 / 99.2 / 97.8 100.0 / 99.5 / 97.3 100.0 / 99.0 / – 100.0 / 99.6 / – 100.0 / 99.3 / 97.7 – / – / –

Leather 100.0 / 99.5 / 98.3 100.0 / 99.5 / 99.2 100.0 / 99.8 / 96.2 100.0 / 96.0 / – 100.0 / 99.8 / – 100.0 / 99.4 / 99.2 – / – / –
Tile 99.5 / 97.3 / 90.9 99.8 / 96.3 / 93.6 100.0 / 99.4 / 97.7 99.8 / 98.9 / – 100.0 / 98.7 / – 99.7 / 96.6 / 92.4 – / – / –

Wood 100.0 / 99.2 / 98.1 99.0 / 95.9 / 92.5 99.2 / 98.2 / 90.5 99.7 / 98.9 / – 99.4 / 98.4 / – 99.3 / 95.8 / 93.3 – / – / –
Bottle 100.0 / 98.9 / 96.6 100.0 / 99.0 / 97.1 100.0 / 99.3 / 95.6 100.0 / 98.2 / – 100.0 / 98.9 / – 100.0 / 98.8 / 97.0 – / – / –
Cable 100.0 / 98.5 / 93.7 99.8 / 98.9 / 95.6 99.2 / 98.1 / 93.9 99.8 / 99.3 / – 99.9 / 98.1 / – 99.2 / 98.4 / 93.9 – / – / –

Capsule 100.0 / 99.0 / 94.8 97.7 / 98.4 / 95.4 99.6 / 99.3 / 84.5 98.8 / 97.6 / – 99.5 / 98.5 / – 99.0 / 98.8 / 96.4 – / – / –
Hazelnut 100.0 / 99.0 / 96.8 100.0 / 99.1 / 95.9 100.0 / 99.7 / 93.1 100.0 / 98.9 / – 100.0 / 98.5 / – 100.0 / 99.2 / 96.3 – / – / –
Metal nut 100.0 / 98.7 / 96.5 100.0 / 98.7 / 94.4 99.8 / 98.6 / 94.4 100.0 / 95.8 / – 100.0 / 98.8 / – 100.0 / 98.1 / 93.0 – / – / –

Pill 100.0 / 98.5 / 96.9 98.6 / 99.1 / 97.7 99.1 / 99.0 / 91.0 97.5 / 95.4 / – 98.1 / 97.9 / – 98.4 / 98.3 / 97.0 – / – / –
Screw 100.0 / 99.5 / 97.6 98.0 / 99.6 / 98.6 99.4 / 99.5 / 87.9 98.5 / 98.8 / – 96.9 / 99.1 / – 98.9 / 99.7 / 98.6 – / – / –

Toothbrush 100.0 / 99.1 / 93.4 100.0 / 99.2 / 95.0 100.0 / 98.7 / 91.6 100.0 / 98.9 / – 100.0 / 99.4 / – 100.0 / 99.1 / 94.2 – / – / –
Transistor 100.0 / 97.7 / 94.7 99.7 / 95.4 / 82.3 99.8 / 98.0 / 92.9 100.0 / 99.6 / – 98.3 / 96.2 / – 98.5 / 94.3 / 81.8 – / – / –

Zipper 99.5 / 98.7 / 95.9 99.5 / 98.1 / 94.9 99.6 / 99.2 / 93.4 99.8 / 98.6 / – 98.5 / 97.9 / – 98.6 / 98.8 / 96.3 – / – / –

Mean 99.90 / 98.81 / 96.00 99.46 / 98.41 / 95.20 99.65 / 99.03 / 93.07 99.56 / 98.18 / – 99.30 / 98.62 / 95.31 99.44 / 98.25 / 94.99 99.50 / 98.21 / –

(b) BTAD

Category UniNet(Ours) ReContrast [17] RealNet [57] ReConPatch [23] PyramidFlow [28] RD++ [47] PatchCore [40]

Class 01 100.0 / 97.2 / 81.7 100.0 / 97.0 / 78.6 100.0 / 98.2 / – 99.7 / 96.8 / – 100.0 / 97.4 / – 96.8 / 96.2 / 73.2 98.0 / 96.9 / 64.9
Class 02 93.2 / 96.3 / 60.1 89.5 / 96.2 / 57.0 88.6 / 96.3 / – 87.7 / 96.6 / – 88.2 / 97.6 / – 90.1 / 96.4 / 71.3 81.6 / 95.8 / 47.3
Class 03 100.0 / 99.6 / 98.2 95.7 / 99.3 / 96.5 96.1 / 97.9 / – 100.0 / 99.0 / – 99.3 / 98.1 / – 100.0 / 99.6 / 87.4 99.8 / 99.1 / 67.7

Mean 97.73 / 97.70 / 80.01 95.06 / 97.50 / 77.40 96.07 / 97.90 / – 95.80 / 97.47 / – 95.83 / 97.70 / – 95.63 / 97.41 / 77.30 93.13 / 97.27 / 59.97

(c) MVTec 3D-AD

Category UniNet(Ours) ReContrast [17] BTF [20] Shape-Guided [9] M3DM [50] AST [41] PatchCore [40]

Bagel 100.0 / 95.2 99.1 / – 85.4 / 89.8 91.1 / 94.6 94.4 / 95.2 94.7 / – 91.2 / 89.9
Cable Gland 99.6 / 98.1 95.3 / – 84.0 / 94.8 93.6 / 97.2 91.8 / 97.2 92.8 / – 90.2 / 95.3

Carrot 100.0 / 97.3 92.7 / – 82.4 / 92.7 88.3 / 96.0 89.6 / 97.3 85.1 / – 88.5 / 95.7
Cookie 73.3 / 90.3 69.6 / – 68.7 / 87.2 66.2 / 91.4 74.9 / 89.1 82.5 / – 70.9 / 91.8
Dowel 100.0 / 98.4 97.5 / – 97.4 / 92.7 97.4 / 95.8 95.9 / 93.2 98.1 / – 95.2 / 93.0
Foam 92.8 / 85.4 82.5 / – 71.6 / 55.5 77.2 / 77.6 76.7 / 84.3 95.1 / – 73.3 / 71.9
Peach 98.9 / 98.1 95.0 / – 71.3 / 90.2 78.5 / 93.7 91.9 / 97.0 89.5 / – 72.7 / 92.0
Potato 98.6 / 95.8 67.9 / – 59.3 / 93.1 64.1 / 94.9 64.8 / 95.6 61.3 / – 56.2 / 93.7
Rope 99.9 / 99.0 98.8 / – 92.0 / 90.3 88.4 / 95.6 93.8 / 96.8 99.2 / – 96.2 / 93.8
Tire 94.5 / 97.9 87.9 / – 72.4 / 89.9 70.6 / 95.7 76.7 / 96.6 82.1 / – 76.8 / 92.9

Mean 95.76 / 95.55 88.63 / 95.20 78.52 / 87.63 81.51 / 93.30 85.03 / 94.22 88.00 / – 81.14 / 91.03

(d) The standard deviation

Dataset △

MVTec AD
0.03

0.02

0.04

BTAD
0.01

0.05

0.03

MVTec 3D-AD
0.99

–

0.33

Table 6. Quantitative results across three industrial datasets. We report I-AUROC / P-AUROC / PRO on the (a) MVTec AD and (b)
BTAD datasets. For the (c) MVTec 3D-AD dataset, P-AUROC is not presented. (d) Each cell, from top to bottom, represents the standard
deviation of I-AUROC, P-AUROC, and PRO. Best and second-best results are highlighted in red and blue, respectively.

8.2. Implementation details
UniNet was trained on a computer with NVIDIA GeForce
RTX 3090. Following [12, 17], we used the publicly avail-
able WideResNet50 pre-trained on ImageNet [13] as S-T
models. AdamW [35] was employed as the optimizer with
weight decay=1e-5, and the learning rate of 5e-3 and 1e-6
for the learnable student and teacher, respectively. The
batch size was 8. Hyper-parameters n, T , τ , λ, α, and β
were set to 3, 2, 1, 0.7, 0.01, and 0.03, respectively.

All images were resized into 256 × 256 without data
augmentation, except for the MVTec 3D-AD dataset and
three polyp segmentation datasets. For the MVTec 3D-AD
dataset, only RGB data were used for training and images
were first center-cropped before resizing them. Follow-
ing [7, 49], we adopted a multi-scale {0.75, 1, 1.25} train-

ing strategy for three polyp segmentation datasets. For a
fair comparison, we followed prior works that selected a
specific proportion of images from the Kvasir and CVC-
ClinicDB datasets for training, while the remaining images
were used for testing. For the CVC-ColonDB dataset, we
directly employed its training and test sets for training and
evaluation.

The procedure for the Weighted Decision Mechanism is
outlined in Algorithm 1. The Weighted Decision Mech-
anism was not applied to the three polyp segmentation
datasets, as only segmentation evaluation metrics were con-
sidered. For these three polyp datasets, segmentation ac-
curacy was evaluated by comparing the upsampled output
of the student model with its pixel-level ground-truth. For
the Ped2 dataset, we employed the frame-ped strategy [31],



(a) MVTec AD

Category UniNet(Ours) ReContrast [17] MambaAD [18] DiAD [19] DeSTSeg [56] SimpleNet [33] UniAD [53]

Carpet 99.4 / 99.8 98.3 / – 99.8 / 99.9 99.4 / 99.9 95.9 / 98.8 95.7 / 98.7 99.8 / 99.9
Grid 99.1 / 99.7 98.9 / – 100.0 / 100.0 98.5 / 99.8 97.9 / 99.2 97.6 / 99.2 98.2 / 99.5

Leather 100.0 / 100.0 100.0 / – 100.0 / 100.0 99.8 / 99.7 99.2 / 99.8 100.0 / 100.0 100.0 / 100.0
Tile 97.8 / 99.2 99.5 / – 98.2 / 99.3 96.8 / 99.9 97.0 / 98.9 99.3 / 99.8 99.3 / 99.8

Wood 100.0 / 100.0 99.7 / – 98.8 / 99.6 99.7 / 100.0 99.9 / 100.0 98.4 / 99.5 98.6 / 99.6
Bottle 100.0 / 100.0 100.0 / – 100.0 / 100.0 99.7 / 96.5 98.7 / 99.6 100.0 / 100.0 99.7 / 100.0
Cable 94.9 / 97.1 95.6 / – 98.8 / 99.2 94.8 / 98.8 89.5 / 94.6 97.5 / 98.5 95.2 / 95.9

Capsule 96.3 / 99.2 97.3 / – 94.4 / 98.7 89.0 / 97.5 82.8 / 95.9 90.7 / 97.9 86.9 / 97.8
Hazelnut 100.0 / 100.0 100.0 / – 100.0 / 100.0 99.5 / 99.7 98.8 / 99.2 99.9 / 99.9 99.8 / 100.0
Metal nut 100.0 / 100.0 100.0 / – 99.9 / 100.0 99.1 / 96.0 92.9 / 98.4 96.9 / 99.3 99.2 / 99.9

Pill 98.3 / 99.6 96.3 / – 97.0 / 99.5 95.7 / 98.5 77.1 / 94.4 88.2 / 97.7 93.7 / 98.7
Screw 100.0 / 100.0 97.2 / – 94.7 / 97.9 90.7 / 99.7 69.9 / 88.4 76.7 / 90.6 87.5 / 96.5

Toothbrush 100.0 / 100.0 96.7 / – 98.3 / 99.3 99.7 / 99.9 71.7 / 89.3 89.7 / 95.7 94.2 / 97.4
Transistor 100.0 / 100.0 94.5 / – 100.0 / 100.0 99.8 / 99.6 78.2 / 79.5 99.2 / 98.7 99.8 / 98.0

Zipper 100.0 / 100.0 99.4 / – 99.3 / 99.8 95.1 / 99.1 88.4 / 96.3 99.0 / 99.7 95.8 / 99.5

Mean 99.05 / 99.64 98.23/ 99.40 98.61 / 99.55 97.15 / 98.97 89.19 / 95.49 95.25 / 98.36 96.51 / 98.83

(b) VisA

Category UniNet(Ours) ReContrast [17] MambaAD [18] DiAD [19] DeSTSeg [56] SimpleNet [33] UniAD [53]

pcb1 100.0 / 100.0 96.5 / – 95.4 / 93.0 88.1 / 88.7 87.6 / 83.1 91.6 / 91.9 92.8 / 92.7
pcb2 99.8 / 99.8 96.8 / – 94.2 / 93.7 91.4 / 91.4 86.5 / 85.8 92.4 / 93.3 87.8 / 87.7
pcb3 92.0 / 93.6 96.8 / – 93.7 / 94.1 86.2 / 87.6 93.7 / 95.1 89.1 / 91.1 78.6 / 78.6
pcb4 100.0 / 100.0 99.9 / – 99.9 / 99.9 99.6 / 99.5 97.8 / 97.8 97.0 / 97.0 98.8 / 98.8

macaroni1 100.0 / 100.0 97.6 / – 91.6 / 89.8 85.7 / 85.2 76.6 / 69.0 85.9 / 82.5 79.9 /79.8
macaroni2 100.0 / 100.0 89.5 / – 81.6 / 78.0 62.5 / 57.4 68.9 / 62.1 68.3 / 54.3 71.6 / 71.6
capsules 99.9 / 100.0 77.7 / – 91.8 / 95.0 58.2 / 69.0 87.1 / 93.0 74.1 / 82.8 55.6 / 55.6
candle 100.0 / 100.0 96.3 / – 96.8 / 96.9 92.8 / 92.0 94.9 / 94.8 84.1 / 73.3 94.1 / 94.0
cashew 96.3 / 98.0 94.5 / – 94.5 / 97.3 91.5 / 95.7 92.0 / 96.1 88.2 / 91.3 92.8 / 92.8

chewinggum 100.0 / 100.0 98.6 / – 97.7 / 98.9 95.1 / 99.5 95.8 / 98.3 96.4 / 98.2 96.3 / 96.2
fryum 99.2 / 99.6 97.3 / – 95.2 / 97.7 89.8 / 95.0 92.1 / 96.1 88.4 / 93.0 83.0 / 83.0

pipe fryum 99.5 / 99.8 99.3 / – 98.7 / 99.3 96.2 / 98.1 94.1 / 97.1 90.8 / 95.5 94.7 / 94.7

Mean 98.9 / 99.2 95.1/ 96.4 94.3 / 94.5 86.8 / 88.3 88.9 / 89.0 87.2 / 87.0 91.5 / 90.8

Table 7. Quantitative results across two industrial datasets. I-AUROC and Image-level AP are reported for the multi-class anomaly
detection. Best and second-best results are highlighted in red and blue, respectively.

which detects anomalies by measuring the discrepancy be-
tween the student-generated frame and its corresponding
ground-truth.

9. More experimental results
9.1. Results on the industrial datasets
Traditional methods develop separate models for each cate-
gory, known as the one-class anomaly detection setting. Re-
cent efforts [17, 18, 53] have attempted to design a unified
model that can handle multiple categories, i.e., the multi-
class anomaly detection setting. Experimental results for
both settings are reported as follows.

Results under the one-class setting. In addition to the
overall average results across all categories from the MVTec
AD, BTAD, and MVTec 3D-AD datasets, the average re-
sults for each individual category from these three datasets
are also presented in Table 6. As reported in Table 6(a),
UniNet achieves 100.0% anomaly detection performance
across all categories of the MVTec AD dataset, with the
exception for the grid, tile, and zipper categories. It also

shows comparable segmentation performance. Moreover,
UniNet demonstrates notable anomaly detection and seg-
mentation performance across most categories in the other
two datasets, as illustrated in Table 6(b) and (c). Particu-
larly, on the MVTec 3D-AD dataset, UniNet achieves the
best and significant results across all categories, except for
Cookie category. Finally, the standard deviations of the
three evaluation metrics across three datasets are presented
in Table 6(d).

Results under the multi-class setting. Table 7 shows
the multi-class anomaly detection on the MVTec AD and
VisA [59] datasets. Following [17–19], both I-AUROC and
Image-level AP are reported. UniNet was compared with
state-of-the-art methods reported in [18]: MambaAD [18],
DiAD [19], DeSTSeg [56], SimpleNet [33], and UniAD
[53]. As shown in Table 7(a), UniNet similarly shows
strong performance across most categories, achieving the
highest average I-AUROC and Image-level AP, with a per-
fect score of 100.0%. UniNet outperforms the other meth-
ods and the baseline model by 0.44% and 0.82% in I-
AUROC, as well as by 0.09% and 0.24% in Image-level AP.



Moreover, as reported in Table 7(b), UniNet also achieves
impressive anomaly detection performance on the more
challenging VisA dataset, obtaining the best results in every
category except for the pcb3 category. UniNet markedly
surpasses leading methods, with improvement of 3.8% in
I-AUROC and 2.8% in Image-level AP, respectively.

9.2. Complexity analysis
Table 8 investigates the complexity of UniNet and the base-
line model, ReContrast [17]. By utilizing the same back-
bone as the baseline model, UniNet achieves a compara-
ble model size to ReContrast, while offering a higher in-
ference speed with an improvement of 6.77 FPS. Addition-
ally, UniNet outperforms ReContrast in terms of I-AUROC,
P-AUROC and PRO, with increases of 0.44%, 0.40%, and
0.80%, respectively.

Method Model Size (GB) ↓ Speed (FPS) ↑ Infer. Time (s) ↓ Metrics

ReContrast 0.141 9.46 15.6 99.46 / 98.41 / 95.20

UniNet 0.150 16.23 8.2 99.90 / 98.81 / 96.00

Table 8. Complexity analysis between UniNet and the baseline
model on the MVTec AD dataset. Metrics are I-AUROC / P-
AUROC / PRO. Best results are highlighted in bold.

10. Supplementary ablation studies
10.1. Study on Multi-Scale Embedding Module
To validate the effectiveness of MEM within the bottleneck,
we studied the effect on the kernel size k in MEM. The
results are presented in Table 9. Both detection and seg-
mentation performance steadily improve as the large kernel
size increases and the best results can be obtained when us-
ing a combination of (3, 7). Notably, larger kernels lead
to a higher number of model size and decreased inference
speed. As shown in Table 9, the model size of the bottle-
neck (e.g., 0.179 GB and 0.363 GB) can significantly sur-
pass that of the entire framework (see Table 8) prior to re-
parameterization. Similarly, as the kernel size increases, the
inference speed of UniNet progressively decreases. How-
ever, re-parameterization results in a smaller model size and
improved inference speed.

10.2. Study on Domain-Related Feature Selection
To demonstrate that introducing domain-related informa-
tion into the student aids in improving its feature repre-
sentations, we investigated the impact of different selection
strategies on three datasets, as shown in Table 10. Without
selecting representative features from the teacher, the stu-
dent faces challenges in understanding target-oriented fea-
ture information, especially on more structurally complex
datasets (e.g., VAD), which negatively affects performance.

k Model Size (GB) ↓ Speed (FPS) ↑ Metrics

(3, 3) 0.077+0.00% 16.04+0.00% 99.82 / 98.16 / 95.81
(3, 5) 0.118-34.75% 15.86+2.28% 99.88 / 98.20 / 95.87
(3, 7) 0.179-57.02% 15.33+5.55% 99.90 / 98.81 / 96.00
(3, 11) 0.363-78.80% 12.13+25.27% 99.87 / 98.16 / 95.75

Table 9. Study on kernel size k in MEM on MVTec AD dataset,
with only the model size of bottleneck reported. Metrics are I-
AUROC / P-AUROC / PRO. The gains after re-parameterization
are highlighted in green, with the best results indicated in bold.

Method
Dataset

MVTec AD APTOS VAD

FS 99.77 / 98.76 / 95.73 99.99 / 99.63 / 99.50 99.25 / 95.88 / 95.90
(FS)P 99.90 / 98.81 / 96.00 100.0 / 99.60 / 99.44 99.95 / 98.60 / 98.60
(FS)A 99.81 / 98.75 / 95.80 99.99 / 99.55 / 99.37 99.87 / 98.20 / 98.20

Table 10. Study on different selection strategies for DFS. For the
MVTec AD, the evaluation metrics include I-AUROC / P-AUROC
/ PRO. For the APTOS and VAD datasets, three metrics are re-
ported: I-AUROC / FI / ACC. “FS”, “(FS)

P ”, and “(FS)
A” re-

fer to no feature selection, selecting representative features, and
selecting all available features, respectively. Best results are high-
lighted in bold.

Pill GT ReContrast +DFS Wood GT ReContrast +DFS

Figure 5. Segmentation results w/o and w DFS on the MVTec AD
dataset.

Conversely, our method effectively guides the student to se-
lect and learn the most crucial features, yielding promising
results. However, selecting all available information from
the teacher may not be beneficial, as it could include unim-
portant details.

We also investigated the impacts of DFS on the perfor-
mance of ReContrast, as illustrated in Fig. 5. Without DFS,
ReContrast fails to sufficiently learn vital domain-related
features, leading to the loss of subtle details–such as the la-
bel on a pill being mistakenly identified as an anomaly. By
incorporating DFS, ReContrast mitigate this issue by select-
ing key features for learning.

10.3. Additional study on key elements
In addition to industrial datasets, ablation studies on the key
components of UniNet on medical and video domains are
listed in Table 11.

10.4. Hyper-parameter sensitivity analysis
The main hyper-parameters include temperature coefficient
T and {α, β} (controlling the upper and lower limits of the
weight in M). As shown in Table 12, we evaluated different



MEM DFS LSC LM M ATPOS Ped2

95.17 95.01
✓ 95.79 95.30
✓ ✓ 96.52 95.63
✓ ✓ 96.24 95.35
✓ ✓ ✓ 97.89 96.09

✓ ✓ ✓ 97.80 96.20
✓ ✓ ✓ ✓ 99.55 97.40
✓ ✓ ✓ ✓ ✓ 100.0 97.91

Table 11. Ablation studies on the key elements of UniNet on med-
ical and video datasets, with I-AUROC listed.

T α β ATPOS Ped2

0.1 0.01 0.03 99.88 97.72
0.1 0.1 0.1 99.85 97.66
0.5 0.05 0.05 99.90 97.94
0.5 0.01 0.05 99.90 97.84
1 0.1 0.03 99.60 97.68
1 0.01 0.1 99.72 97.60
2 0.01 0.03 100.0 97.91
2 0.1 0.05 99.97 97.80

Table 12. Hyper-parameter analysis on medical and video datasets,
with I-AUROC reported.

combinations of T (0.1, 0.5, 1, 2), α (0.01, 0.05, 0.1), and
β (0.03, 0.05, 0.1).

11. Qualitative Results
To clearly validate the superior segmentation performance
of UniNet, comprehensive visualization results are pre-
sented across three industrial datasets and three medical
datasets.

11.1. Visualization on industrial datasets
As illustrated in Fig. 6, UniNet effectively segments both
local and global anomalies across texture and object cate-
gories, while maintaining lower anomaly scores in regions
devoid of anomalies.

Results on the BTAD and MTVec 3D-AD datasets are
respectively shown in Fig. 7(a) and (b). For the BTAD
dataset, despite the anomalies closely resembling normal
areas, UniNet exhibits exceptional segmentation perfor-
mance, effectively detecting even the smallest anomalies.
For the MVTec 3D-AD dataset, using only the RGB modal-
ity, UniNet still achieves promising segmentation results, as
shown in Fig. 7(b). However, due to lack of multi-modal
information, UniNet may fail to maintain lower anomaly
scores in some normal regions, such as the Bagel, Cookie,
and Potato categories. This is because the chocolates in the
Cookie category resemble anomalies, such as holes. As a re-
sult, relying on a single modality alone makes it challenge
to achieve more accurate segmentation. We will explore
combining other modalities with the RGB modality later.

11.2. Visualization on medical datasets
In addition to industrial datasets, results on three polyp
datasets are visualized in Fig. 7(c). Despite the variabil-
ity in images collected from the intestinal environments of
different patients, UniNet also demonstrates superior seg-
mentation performance in polyps. As illustrated in Fig 7(c),
the segmented results perfectly match the ground-truths,
demonstrating that UniNet is highly resistant to both over-
segmentation and under-segmentation.

12. Discussion
12.1. Limitation
Similar to ReContrast [17] and other unsupervised AD
methods [12, 27, 33], UniNet also experiences training in-
stability for certain categories, with performance fluctuat-
ing when overtraining occurs or random seeds are changed,
particularly in anomaly segmentation performance. How-
ever, thank to weighted decision mechanism M, anomaly
detection performance can hardly be influenced, ensuring
robust anomaly detection results. Besides, although UniNet
has achieved promising results on multimodal datasets like
MVTec 3D-AD, relying solely on 2D data limits its poten-
tial for better anomaly detection performance.

12.2. Future work
We will apply UniNet to other tasks, such as multimodal
anomaly detection or 3D medical image segmentation, by
incorporating other modalities like text or point cloud to
achieve superior performance. Also, the optimization of
loss functions and the model will be investigated to ensure
more stable training.



Figure 6. Visualization of UniNet on the MVTec AD dataset. Each group, from top to bottom, displays the anomalous images, our
segmentation results, and ground-truths, respectively.
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Figure 7. Visualization of UniNet on the BTAD, MVTec 3D-AD, and three polyp datasets (Kvasir, CVC-ClinicDB, and CVC-ColonDB).
For the MVTec 3D-AD dataset, all categories are listed in order: Bagel, Cable gland, Carrot, Cookie, Dowel, Foam, Peach, Potato, and
Rope. Each group, from top to bottom, displays the anomalous images, our segmentation results, and ground-truths, respectively.
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